

DPP - 4 (WEP)

Video Solution on Website:https://physicsaholics.com/home/courseDetails/75 Video Solution on YouTube:https://youtu.be/AoTxhCp1uY0 Written Solutionon Website:https://physicsaholics.com/note/notesDetalis/77 A particle moving along x-axis is being acted upon by one dimensional conservative Q1. force F. In the F-x curve shown, four points J, K, L, M are marked on the curve. Column II gives different type of equilibrium for the particle at different positions. Column I gives certain positions on the force position graphs. Match the positions in Column-I with the corresponding nature of equilibrium at these posit Column II Column I (p) Neutral equilibrium (A) Point J is position of (q) Unstable equilibrium (B) Point K is position of (C) Point L is position of (r) Stable equilibrium (D) Point M is position of (s) No equilibrium A particle A of mass 10/7 kg is moving in the positive direction of x. Its initial Q 2. position is x = 0 & initial velocity is 1 m/s. The velocity at x = 10 is: (use the graph given) Power (in watts) 2 I. I. 10 (in m) (a) 4 m/s(b) 2 m/s(c) $3\sqrt{2}$ m/s (d) 100/3 m/s

Q 3. The given plot shows the variation of U, the potential energy of interaction between two particles with the distance separating them, r. Then which of the following statements are correct.:

- (a) B and D are equilibrium points
- (b) C is a point of stable equilibrium
- (c) The force of interaction between the two particles is attractive between points C and D and repulsive between points D and E on the curve.
- (d) The force of interaction between the particles is repulsive between points E and F on the curve.
- Q 4. An engine exerts a force $\vec{F} = (20\hat{\imath} 3\hat{\jmath} + 5\hat{k})N$ and moves with velocity $\vec{v} = (6\hat{\imath} + 20\hat{\jmath} 3\hat{k})$ m/s. The power of the engine (in watt) is: (a) 45 (b) 75 (c) 20 (d) 10
- Q 5. In the figure shown the potential energy U of a particle is plotted against its position ' x' from origin. Then which of the following statement is correct. A particle at:

(a) x_1 is in stable equilibrium (c) x_3 is in stable equilibrium (d) none of these

- Q 6. Power supplied to a particle of mass 2 kg varies with time as $P = 3t^2 / 2$ watt. Here t is in second, velocity of particle at t = 0 is v = 0. The velocity of particle at time t=2s will be (a) 1 m/s (b) 4 m/s (c) 2 m/s (d) $2\sqrt{2}$ m/s
- Q 7. A force F acting on a body depends on its displacement S as $F \propto S^{-1/3}$ The power delivered by F will depend on displacement as (a) $S^{2/3}$ (b) $S^{-5/3}$ (c) $S^{1/2}$ (d) S^{0}
- Q 8. A body is moved along a straight line by a machine delivering constant power. The distance moved by the body in time t is proportional to (a) $t^{1/2}$ (b) $t^{3/4}$ (c) $t^{3/2}$ (d) t^2
- Q 9. A constant power P is applied to a particle of mass m. The distance travelled by the particle when its velocity increases from v_1 to v_2 is (neglect friction) (a) $3p / m (v_2^2 - v_1^2)$ (b) $m / 3p (v_2 - v_1)$

(c) m/3p $(v_2^3 - v_1^3)$ (d) m/3p $(v_2^2 - v_1^2)$

- Q 10. A block of mass m is pulled by a constant power P placed on a rough horizontal plane. The friction coefficient between the block and the surface is μ. Maximum velocity of the block will be
 (a) μp/mg
 (b) μmg/p
 (c) μmgp
 (d) p/μmg
- Q 11. A body is moved from rest along a straight line by a machine delivering constant power. The ratio of displacement and velocity (s/v) varies with time *t* as:

- Q 12. A particle moves in a straight line with constant acceleration under a constant force F. Select & correct alternatives).
 - (a) power developed by this force varies linearly with time.
 - (b) power developed by this force varies parabolically with time.
 - (c) power developed by this force varies linearly with displacement.
 - (d) power developed by this force varies parabolically with displacement.
- Q 13. In projectile motion power of the gravitational force
 - (a) is constant throughout
 - (b) is negative for first half, zero at topmost point and positive for rest half
 - (c) varies linearly with time
 - (d) is positive for complete path
- Q 14. A pump motor is used to deliver water at a certain rate from a given pipe. To obtain n times water from the same pipe in the same time
 - (a) force exerted by the motor should be increased n^2 times
 - (b) force exerted by the motor should be increased n times
 - (c) power of the motor must be increased n^3 times
 - (d) power of the motor must be increased n^2 times

Answer Key

Q.1 (A) s (B) q	Q.2 a	Q.3 b, d	Q.4 b	Q.5 d
(C) r (D) p				
Q.6 c	Q.7 d	Q.8 c	Q.9 c	Q.10 d
Q.11 a	Q.12 a, d	Q.13 b, c	Q.14 a, c	

× × ×	PLUS India's Be Interaction Structure Live Test Personal Study Pla	ICONIC est Educat ve Live Cla ed Courses s & Quizze Coach	*i ors sses & PDFs s			
24 months No cost EMI		₹:	2,333/n ₹56,0	no 00	>	
18 months No cost EMI		₹	2,625/n ₹47,2	no 50	>	
12 months No cost EMI		₹	3,208/n ₹38,5	no 00	>	
6 months No cost EMI		₹	4,667/n ₹28,0	no 00	>	
To be paid as a one-time payment View all plans						
Add a re	eferral cod	e		A	PPLY	

PHYSICSLVE

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

	PLUS						
S	India's Best Educators						
S	Interactive Live Classes						
8	Structured Courses & PDFs						
\otimes	Live Tests & Quizzes						
	Personal						
	Study Plo	inner					
24 months		₹2.100/mo					
No cost EMI		+10% OFF ₹50,400	>				
18 months		₹2.363/mo					
No cost EMI		+10% OFF ₹42,525	>				
12 months		₹2 888/mo					
No cost EMI		+10% OFF ₹34,650	>				
(markle		F4 200 /					
6 months		₹4,200/mo	>				
NO COST EMI		+10% OFF \$25,200					
To be paid as a one-time payment							
View all plans							
Awesome! PHYSICSLIVE code applied X							

Written Solution

DPP-4 WEP: Equilibrium, Power By Physicsaholics Team

JEE Main & Advanced, NSEP, INPhO, IPhO Physics DPP

DPP-4 WEP: Equilibrium, Power By Physicsaholics Team

At L,
$$F = 0$$

Just before L, $F = +Ve \Rightarrow F$ is towards L
1, after L, $F = -Ve \Rightarrow 1$.
 $\Rightarrow L$ is stable equilibrium.
At M, $F = 0$
Just before M, $F = 0$
 \downarrow , after M, $F = 0$
 \downarrow , after M, $F = 0$
 \Rightarrow M is neutral equilibrium.
Ans. (A)s (C)r (D)p

Solution:2

 $\frac{10}{7\times3}(V^{3}-1) = 10\times3$ 64 \neg 320

a Ans(

Solution:3 Slope In U-X graph tora At Equilibrium position F Slope = U B Only (& E are equilibrium. In U-X graph, minima is stable equilibrium and maxima is unstable equilitatium => Cix stable and Eis Unstable equilibrium. from (to E slope = tre \Rightarrow F = -re \Rightarrow altraction. from E to F & Slope = - Ve => F = + Ve => repulsive

Solution:4

 $\overrightarrow{F} = 20\widehat{1} - 3\widehat{3} + 5\widehat{K}$ $\overrightarrow{V} = (\widehat{1} + 20\widehat{3} + 3\widehat{K})$ $P = \bar{L}$ Ans.b

Solution:6

(-INs(c

ANS(d)

1 m dt dx Vx = 2p m 2 × 2 2P m flng(a

F = (onstant)Solution:12 Q = Constant√ & t is straight line. P-t graph P = シ dx ∞ + dt Ø a r d, X XX -> P-X graph is parabola. Ans(a,d)

For Video Solution of this DPP, Click on below link

Video Solution on Website:- https://physicsaholics.com/home/courseDetails/75

Video Solution on YouTube:-

https://youtu.be/AoTxhCp1uY0

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/77

