

DPP - 4 (WEP)

Video Solution on Website:-
 https://physicsaholics.com/home/courseDetails/75

Video Solution on YouTube:-

https://youtu.be/AoTxhCp1uY0

Written Solutionon Website:-

https://physicsaholics.com/note/notesDetalis/77
Q 1. A particle moving along x -axis is being acted upon by one dimensional conservative force F . In the $\mathrm{F}-\mathrm{x}$ curve shown, four points J, K, L, M are marked on the curve.
Column II gives different type of equilibrium for the particle at different positions.
Column I gives certain positions on the force position graphs. Match the positions in
Column-I with the corresponding nature of equilibrium at these posit

Column I

(A) Point J is position of
(B) Point K is position of
(C) Point L'is position of
(D) Point M is position of

Column II
(p) Neutral equilibrium
(q) Unstable equílibrium
(r) Stable equilibrium
(s) No equilibrium

Q 2. A particle A of mass $10 / 7 \mathrm{~kg}$ is moving in the positive direction of x . Its initial position is $\mathrm{x}=0$ \& initial velocity is $1 \mathrm{~m} / \mathrm{s}$. The velocity at $\mathrm{x}=10$ is:
(use the graph given)

(a) $4 \mathrm{~m} / \mathrm{s}$
(b) $2 \mathrm{~m} / \mathrm{s}$
(c) $3 \sqrt{ } 2 \mathrm{~m} / \mathrm{s}$
(d) $100 / 3 \mathrm{~m} / \mathrm{s}$

Q 3. The given plot shows the variation of U, the potential energy of interaction between two particles with the distance separating them, r. Then which of the following statements are correct.:

(a) B and D are equilibrium points
(b) C is a point of stable equilibrium
(c) The force of interaction between the two particles is attractive between points C and

D and repulsive between points D and E on the curve.
(d) The force of interaction between the particles is repulsive between points E and F on the curve.

Q 4. An engine exerts a force $\overrightarrow{\boldsymbol{F}}=(\mathbf{2 0} \hat{\boldsymbol{\imath}}-\mathbf{3} \hat{\boldsymbol{\jmath}}+\mathbf{5} \widehat{\boldsymbol{k}}) \boldsymbol{N}$ and moves with velocity $\overrightarrow{\boldsymbol{v}}=(\mathbf{6} \hat{\boldsymbol{\imath}}+$ $\mathbf{2 0} \hat{\boldsymbol{j}} \mathbf{- 3} \widehat{\boldsymbol{k}}$) m / s. The power of the engine (in watt) is:
(a) 45
(b) 75
(c) 20
(d) 10

Q 5. In the figure shown the potential energy U of a particle is plotted against its position ' x ' from origin. Then which of the following statement is correct. A particle at:

(a) x_{1} is in stable equilibrium
(b) x_{2} is in stable equilibrium
(c) x_{3} is in stable equilibrium
(d) none of these

Q 6. Power supplied to a particle of mass 2 kg varies with time as $\mathrm{P}=3 \mathrm{t}^{2} / 2$ watt. Here t is in second, velocity of particle at $t=0$ is $v=0$. The velocity of particle at time $t=2 \mathrm{~s}$ will be
(a) $1 \mathrm{~m} / \mathrm{s}$
(b) $4 \mathrm{~m} / \mathrm{s}$
(c) $2 \mathrm{~m} / \mathrm{s}$
(d) $2 \sqrt{ } 2 \mathrm{~m} / \mathrm{s}$

Q 7. A force F acting on a body depends on its displacement S as $\mathrm{F} \propto \mathrm{S}^{-1 / 3}$ The power delivered by F will depend on displacement as
(a) $S^{2 / 3}$
(b) $\mathrm{S}^{-5 / 3}$
(c) $S^{1 / 2}$
(d) S^{0}

Q 8. A body is moved along a straight line by a machine delivering constant power. The distance moved by the body in time t is proportional to
(a) $t^{1 / 2}$
(b) $t^{3 / 4}$
(c) $\mathrm{t}^{3 / 2}$
(d) t^{2}

Q 9. A constant power P is applied to a particle of mass m. The distance travelled by the particle when its velocity increases from v_{1} to v_{2} is (neglect friction)
(a) $3 \mathrm{p} / \mathrm{m}\left(\mathrm{v}_{2}{ }^{2}-\mathrm{v}_{1}{ }^{2}\right)$
(b) $m / 3 p\left(v_{2}-v_{1}\right)$

(c) $\mathrm{m} / 3 \mathrm{p}\left(\mathrm{v}_{2}{ }^{3}-\mathrm{v}_{1}{ }^{3}\right)$
(d) $m / 3 p\left(v_{2}{ }^{2}-v_{1}{ }^{2}\right)$
Q 10. A block of mass m is pulled by a constant power P placed on a rough horizontal plane. The friction coefficient between the block and the surface is μ. Maximum velocity of the block will be
(a) $\mu \mathrm{p} / \mathrm{mg}$
(b) $\mu \mathrm{mg} / \mathrm{p}$
(c) $\mu \mathrm{mgp}$
(d) $\mathrm{p} / \mu \mathrm{mg}$

Q 11. A body is moved from rest along a straight line by a machine delivering constant power. The ratio of displacement and velocity (s / v) varies with time t as:
(a)

(b)

(c)

Q 12. A particle moves in a straight line with constant acceleration under a constant force F . Select \& correct alternatives).
(a) power developed by this force varies linearly with time.
(b) power developed by this force varies parabolically with time.
(c) power developed by this force varies linearly with displacement.
(d) power developed by this force yaries parabolically with displacement.

Q 13. In projectile motion power of the grayitational force
(a) is constant throughout
(b) is negative for first half, zero at topmost point and positive for rest half
(c) varies linearly with time
(d) is positiye for complete path

Q 14. A pump motor is used to deliver water at a certain rate from a given pipe. To obtain n times water from the same pipe in the same time
(a) force exerted by the motor should be increased n^{2} times
(b) force exerted by the motor should be increased n times
(c) power of the motor must be increased n^{3} times
(d) power of the motor must be increased n^{2} times

Answer Key

Q.1 (A) s (B) q (C) r (D) p	Q.2 a	Q.3 b, d	Q.4 b	Q.5 d
Q.6 c	Q.7 d	Q.8 c	Q.9 c	Q.10 d
Q.11 a	Q.12 a, d	Q.13 b, c	Q.14 a, c	

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI
₹3,208/mo
₹ 38,500
₹ $4,667 / \mathrm{mo}$
₹ 28,000
6 months
No cost EMI

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
\times Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

12 months	₹ $2,888 / \mathrm{mo}$
No cost EMI	$+10 \%$ OFF ₹ 34,650

6 months
No cost EMI
₹ $4,200 / \mathrm{mo}$

$$
+10 \% \text { OFF ₹ } 25,200
$$

To be paid as a one-time payment
Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS.

Written Solution

DPP-4 WEP: Equilibrium, Power
By Physicsaholics Team

JEE Main \& Advanced, NSEP, INPhO, IPhO Physics DPP

DPP-4 WEP: Equilibrium, Power By Physicsaholics Team

Solution: 1

$$
\text { At } J, F \neq 0
$$

$\Rightarrow J$ is not equilibrium.

just before $K, F=-v e F$ is as ar from K
just after $k, F=+v_{2} \Rightarrow$, D
$\Rightarrow \quad K$ is unstable equilibrium.

At $L, F=0$
just before $L, F=+v e \Rightarrow F$ is towards L

1) after $L, F=-V_{e} \Rightarrow$,
$\Rightarrow L$ is stable equilibrium
At $M, F=0$
just before $M, F=F=0$
"after $D M, F=0$
$\Rightarrow M$ is neutral equilibrium.
Ans. (A)s (Cor (Dep

Solutions

$$
\begin{aligned}
m & =10 / 7 \mathrm{~kg} \\
\text { at } x & =0, u=1 \mathrm{~m} / \mathrm{sec} \\
\text { at } x & =10, V=?
\end{aligned}
$$

Area under Curve

$$
\begin{aligned}
& =\int P d x=\int F v d x=\int m a v d x=\int m \frac{v d v}{d x} v d x \\
& =m \int_{u}^{v} v^{2} d v=\frac{m\left(v^{3}-u^{3}\right)}{3} \\
& \Rightarrow \text { Area }=\frac{10}{7 \times 3}\left(v^{3}-1\right)=\frac{1}{2} \times 10(4+2)
\end{aligned}
$$

$$
\begin{array}{rlrl}
\frac{10}{7 \times 3}\left(V^{3}-1\right) & =10 \times 3 \\
\Rightarrow & V & =64 \\
\Rightarrow & V & =4 \mathrm{~m} / \mathrm{sec}
\end{array}
$$

$\operatorname{Ans}(a)$

Solution:3
in U-X graph
At Equilibrium position
Slope $=0$
Only C \& E are equilibrium os

in $U-x$ graph, minima is stable equilibrium and maxima is Testable equikiovium
$\Rightarrow C$ is stable and E is unstable equilibrium. from $\left(\right.$ to E steps $=+v_{e} \Rightarrow F=-v_{e} \Rightarrow$ attraction.
from E to F, Slope $=-V_{e} \Rightarrow F=+V_{e} \Rightarrow$ repulsive
$\operatorname{Ans}(b, d)$

Solution:4

$$
\begin{aligned}
& \vec{F}=20 \hat{\imath}-3 \hat{\jmath}+5 \hat{k} \\
& \vec{V}=6 \hat{\imath}+20 \hat{\jmath}+3 \hat{k} \\
& p=\vec{F} \cdot \vec{V} \\
& \text { Ans. }
\end{aligned}
$$

Solution:5
At equilibrium in $U-x$ graph

$$
\frac{d v}{d x}=0 \Rightarrow \text { slope }=0
$$

\Rightarrow only x_{2} is equilioriuns.
Since x eDs maxima its Dunstable equilibrium.

Ans (d)

Solution:6

$$
\begin{aligned}
& { }^{6} \quad p=\frac{3 t^{2}}{2} \text { \& at } t=0, v=0 \text { \& } m=2 k g \\
& W=\int p d t=\int_{0}^{2} \frac{3 t^{2}}{2} d t=\sqrt{\frac{t^{3}}{2}} \int_{0}^{2}=4 J
\end{aligned}
$$

Using work - thergy theorem

$$
\begin{aligned}
& w_{0}==A k \\
& \begin{array}{l}
\Rightarrow D=\frac{1}{2} \times 2 v e c o s \\
\Rightarrow
\end{array} \\
& \Rightarrow \text { Br } \sqrt{v}=2 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Solution:7

$$
\begin{aligned}
& F \propto s^{-1 / 3} \\
& \Rightarrow \quad a \propto s^{-1 / 3} \\
& \Rightarrow \quad \int V d v \propto \int s^{-1 / 3} / 2 d s \\
& \Rightarrow \quad Q^{2} C^{2 / 3}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\Rightarrow & D T=\frac{d}{d t}(K E) \propto s^{2 / 3-1} \\
\Rightarrow & \frac{d s}{d t} \propto V s^{-1 / 3} \propto s^{1 / 3} s^{-1 / 3}
\end{array} \\
& \Rightarrow \quad p \propto s^{0} \quad d t \quad \operatorname{Ans}(d)
\end{aligned}
$$

Solution:8

$$
\begin{aligned}
& p=\text { Constant } \\
\Rightarrow & W=p t \\
\Rightarrow & \frac{1}{2} m v^{2}=p t \\
\Rightarrow & V \alpha t^{1 / 2} \\
\Rightarrow & \\
\Rightarrow & \operatorname{ANs}(c)
\end{aligned}
$$

Solution: 9

$$
\begin{aligned}
& P=\text { Constant } \\
\Rightarrow & P=F V=m a v \\
\Rightarrow & P=m v \frac{d v}{d x} v v_{2} \\
\Rightarrow & \int_{0}^{x} d x \frac{m}{p} v^{2} d v \\
\Rightarrow &
\end{aligned}
$$

Solution:10 At $V=V_{\max }, \frac{d r}{d t}=0$
by work - Energy theorem \rightarrow

$$
\begin{aligned}
& W_{\text {all }}=K-K_{i}=\frac{1}{2} m g k_{i}^{2} \\
\Rightarrow & P_{\text {all }}=\frac{1}{2} m \times 2 \cdot \frac{d v}{d t}-a \\
\Rightarrow & P_{\text {all }}=0 \\
\Rightarrow & P-\mu m g \sqrt{2}=0 \\
\Rightarrow & P^{2}=\frac{p}{\mu m g} \quad
\end{aligned}
$$

Solution:11

$$
\begin{array}{ll}
& p=\text { Constant } \\
\Rightarrow & p=m a v \\
\Rightarrow & \frac{p}{m}=v^{2} \frac{d v}{d x} \\
\Rightarrow & \frac{p d x}{m}=\frac{p x}{m}=\frac{v^{2}}{c} \\
\Rightarrow & \quad \frac{p}{d v}
\end{array}
$$

$$
\begin{aligned}
& \int \frac{d x}{\sqrt{x}}=\sqrt{\frac{2 p}{m}} \int d t \\
\Rightarrow & 2 x^{1 / 2}=\sqrt{\frac{2 p}{m}} t \\
\Rightarrow & x=\frac{2 p}{4 m} t^{2} \\
\Rightarrow & \quad \frac{p}{m} t \\
\Rightarrow & \frac{x}{1}=\frac{x}{2}+
\end{aligned}
$$

Solution:12

$$
\begin{aligned}
& F=\text { Constant } \\
& \Rightarrow \quad a=\text { Constant } \\
& \Rightarrow \quad V \propto t
\end{aligned}
$$

$$
\begin{aligned}
& V \propto\left[t \Rightarrow \frac{d x}{d t} \propto t \square f d x \propto t d t\right. \\
& \Rightarrow \quad x x \propto t^{2} \Leftrightarrow t \propto \sqrt{x} \\
& \Rightarrow \operatorname{poct} \propto \sqrt{x} \\
& \Rightarrow P^{2} \propto x \rightarrow P-x \text { graph is parabola. } A_{N S}(a, d)
\end{aligned}
$$

Solution:13

$$
\begin{aligned}
& P=\vec{F} \cdot \vec{V} \theta-\ln g V_{y}=-m g(4 \sin \theta-g t) \\
\Rightarrow & P=-m g u \sin \theta+m g+t \\
& =0 \Rightarrow p=0
\end{aligned}
$$

at topmost point $V_{y}=0 \Rightarrow P=0$ before topmost ooint ming \& V_{y} ake opposite $\Rightarrow P=-v e$.
Aftor, $, 1,,$, in samedirection $\Rightarrow p=+v_{r} . \operatorname{ANS}(b, c)$

Solution:14
\rightarrow mass of water delivered per Second $p \propto \frac{1}{2} \mathrm{M}_{⿰ 冫}^{2}$ speed of water

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-
https://physicsaholics.com/home/courseDetails/75
https://youtu.be/AoTxhCp1uY0
https://physicsaholics.com/note/notesDetalis/77

Chalo Nikis

